勾股定理如何证明-

证法一:?

这是最简单精妙的证明方法之一,几乎不用文字解释,可以说是无字证明。如图所示,左边是4个相同的直角三角形与中间的小正方形拼成的一个大正方形。

图形变换后面积没有变化,左边大正方形的边长是直角三角形的斜边c,面积是c2;右边图形可分割为两个正方形,它们的边长分别为直角三角形的两条直角边a和b,面积就是a2+b2,于是a2+b2=c2。

图中左边的“弦图”最早出现在公元222年的中国数学家赵爽所著《勾股方圆图注》,赵爽是我国数学史上证明勾股定理的第一人。2002年8月,在北京召开的国际数学家大会,标志着中国数学进入崭新的时代,大会会徽就是这个“弦图”,寓意中国古代数学取得的重要成果。

证法二:?

这一解法应该是来历最有趣的证明方法之一,是由美国第20任总统茄菲尔德(JamesA.Garfield,1831~1881)用下图证明出的。

这位总统并不是一位数学家,他甚至都不曾学习过数学。他只是非正式地自学过几何知识,很喜欢摆弄基础图形,当他还是众议院议员时,想出了这个精巧的证明,1876年发表在《新英格兰教育杂志》(New England Journal of Education)上。总统先生的证明如下:

首先,图中的梯形面积为:

组成梯形的三个三角形的面积为:

因此就有如下等式:

即得a2+b2=c2。 ?

接下来的两个证明非常简单易懂,被认为是所有证明中最短、最简单的证明,因为从开始到结束只用了几行。但这些证明依赖于相似三角形的概念,要全面展开这个概念还需要大量的基础工作,这里就不再赘述。

证法三:

证法四:?

这一证法涉及到圆内相交弦定理:m·n=p·q(如左图),再看AB和CD垂直的情况,相交弦定理仍然成立(如右图),因此(c-a)(c+a)=b2。即得c2-a2=b2于是,a2+b2=c2。

勾股定理和测量术的来历是什么?

勾股定理历史:勾股定理是余弦定理的一个特例。这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”或者“百牛定理“(毕达哥拉斯发现了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”),法国、比利时人又称这个定理为“驴桥定理”。他们发现勾股定理的时间都比我国晚,我国是最早发现这一几何宝藏的国家。 目前初二学生学,教材的证明方法采用赵爽弦图,证明使用青朱出入图。 来历:毕达哥拉斯树是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。毕达哥拉斯在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,又给出了另外一个证明[1]。法国和比利时称为驴桥定理,埃及称为埃及三角形。我国古代把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦

内容: 如果直角三角形两直角边分别为A,B,斜边为C,那么 A^2+B^2=C^2 ; 即直角三角形两直角边长的平方和等于斜边长的平方。古埃及人用这样的方法画直角

如果三角形的三条边A,B,C满足A^2+B^2=C^2;,还有变形公式:AB=根号(AC^2+BC^2),如:一条直角边是a,另一条直角边是b,如果a的平方与b的平方和等于斜边c的平方那么这个三角形是直角三角形。(称勾股定理的逆定理)

费马定力: 当整数n > 2时,关于x, y, z的不定方程 x^n + y^n = z^n. 无正整数解

实数:包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。又叫二次方根,对于非负实数来说,是指某个自乘结果等于的实数,表示为〔√ ̄〕,其中属于非负实数的平方根称算术平方根。

平方根:

七巧板的由来?

中国古代最早的数学和天文学著作《周髀算经》上记载了一段周公与商高的对话。周公问:“窃闻乎大夫善数也,请问古者包牺立周天历度。夫天不可阶而升,地不可得尺寸而度,请问数安从出?”商高答:“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五。既方其外,半之一矩,环而共盘。得成三、四、五,两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所由生也。”这是有名的“周公问数”。这段对话用我们今天的话解释是这样的:周公问商高:古代时伏羲是怎样测量天文和历法的?天没有可攀的台阶,地又不能用尺去测量,这些数是从哪儿得出来的呢?商高回答:数是根据圆形和方形的数学道理计算出来的。圆来自于方,而方来自于直角三角形。直角三角形是根据乘除法的计算得出来的。将一条线段折三段围成直角三角形,一直角边(勾)为三,另一直角边(股)为四,则斜边(弦)为五。商高的证明是用右边的图来解释的。利用直角三角形三边的三、四、五的关系可知:方盘面积为49,而四个阴影的三角形的面积之和为24,因此正方形BDLH的面积为49-24=25,这种证明方法比欧几里得的几何原本中的证明更简明易懂。

也称“七巧图”、“智慧板”,是汉族民间流传的智力玩具。它是由唐代的宴几演变而来的,原为文人的一种室内游戏,后在民间演变为拼图板玩具。据清代陆以湉《冷庐杂识》说::宋黄伯思宴几图,以方几七,长段相参,衍为二十五体,变为六十八名。明严瀓蝶几图,则又变通其制,以勾股之形,作三角相错形,如蝶翅。其式三,其制六,其数十有三,其变化之式,凡一百有余。近又有七巧图,其式五,其数七,其变化之式多至千余。体物肖 形,随手变幻,盖游戏之具,足以排闷破寂,故世俗皆喜为之。”现七巧板系由一块正方形切割为五个小勾股形,将其拼凑成各种事物图形,如人物、动植物、房亭楼阁、车轿船桥等,可一人玩,也可多人进行比赛。利用七巧板可以阐明若干重要几何关系,其原理便是古算术中的“出入相补原理”

本文来自作者[素浅]投稿,不代表巨鲨号立场,如若转载,请注明出处:https://jvsha.com/jvs/7053.html

(3)
素浅的头像素浅签约作者

文章推荐

发表回复

作者才能评论

评论列表(3条)

  • 素浅的头像
    素浅 2025年10月29日

    我是巨鲨号的签约作者“素浅”

  • 素浅
    素浅 2025年10月29日

    本文概览:证法一:?这是最简单精妙的证明方法之一,几乎不用文字解释,可以说是无字证明。如图所示,左边是4个相同的直角三角形与中间的小正方形拼成的一个大正方形。图形变换后面积没有变化,左边...

  • 素浅
    用户102909 2025年10月29日

    文章不错《勾股定理如何证明-》内容很有帮助

联系我们

邮件:巨鲨号@gmail.com

工作时间:周一至周五,9:30-17:30,节假日休息

关注微信